निम्नलिखित को सिद्ध कीजिए

$\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
$L.H.S.$ $=\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x$
 
$=\frac{1}{2}[2 \sin (n+1) x \sin (n+2) x+2 \cos (n+1) x \cos (n+2) x]$
 
$=\frac{1}{2}\left[\begin{array}{c}\cos \{(n+1) x-(n+2) x\}-c i s\{(n+1) x+(n+2) x\} \\ +\cos \{(n+1) x+(n+2) x\}+\cos \{(n+1) x-(n+2) x\}\end{array}\right]$
 
$\left[\begin{array}{c}\because-2 \sin A \sin B=\cos (A+B)-\cos (A-B) \\ 2 \cos A \cos B=\cos (A+B)+\cos (A-B)\end{array}\right]$
 
$=\frac{1}{2} \times 2 \cos \{(n+1) x-(n+2) x\}$
 
$=\cos (-x)=\cos x= R . H.S$

Similar Questions

यदि $5\tan \theta = 4,$ तो $\frac{{5\sin \theta - 3\cos \theta }}{{5\sin \theta + 2\cos \theta }} = $

यदि $\tan \theta = \frac{a}{b},$ तो $\frac{{\sin \theta }}{{{{\cos }^8}\theta }} + \frac{{\cos \theta }}{{{{\sin }^8}\theta }} = $

$\cot x - \tan x = $

$\tan \frac{13 \pi}{12}$ का मान ज्ञात कीजिए।

यदि $\sin x + {\rm{cosec}}\,x = 2,$ तो $sin^n x + cosec^n x$ बराबर है