Prove that $\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x=\cos x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
$L.H.S.$ $=\sin (n+1) x \sin (n+2) x+\cos (n+1) x \cos (n+2) x$
 
$=\frac{1}{2}[2 \sin (n+1) x \sin (n+2) x+2 \cos (n+1) x \cos (n+2) x]$
 
$=\frac{1}{2}\left[\begin{array}{c}\cos \{(n+1) x-(n+2) x\}-c i s\{(n+1) x+(n+2) x\} \\ +\cos \{(n+1) x+(n+2) x\}+\cos \{(n+1) x-(n+2) x\}\end{array}\right]$
 
$\left[\begin{array}{c}\because-2 \sin A \sin B=\cos (A+B)-\cos (A-B) \\ 2 \cos A \cos B=\cos (A+B)+\cos (A-B)\end{array}\right]$
 
$=\frac{1}{2} \times 2 \cos \{(n+1) x-(n+2) x\}$
 
$=\cos (-x)=\cos x= R . H.S$

Similar Questions

If $\cos x + {\cos ^2}x = 1,$ then the value of ${\sin ^2}x + {\sin ^4}x$ is

At what time between $10\,\,O'clock$ and $11\,\,O 'clock$ are the two hands of a clock symmetric with respect to the vertical line (give the answer to the nearest second)?

  • [KVPY 2009]

The value of the expression $1 - \frac{{{{\sin }^2}y}}{{1 + \cos \,y}} + \frac{{1 + \cos \,y}}{{\sin \,y}} - \frac{{\sin \,\,y}}{{1 - \cos \,y}}$ is equal to

The value of $\tan ( - 945^\circ )$ is

If $\tan \theta - \cot \theta = a$ and $\sin \theta + \cos \theta = b,$ then ${({b^2} - 1)^2}({a^2} + 4)$ is equal to