સમીકરણ ${t^2}{x^2} + |x| + \,9 = 0$ ના બધાજ બીજોનો ગુણાકાર . . . . .
હંમેશા ધન હોય છે.
હંમેશા ઋણ હોય છે.
અસ્તિત્વ નથી.
એકપણ નહી
જો $\alpha $ અને $\beta $ દ્રીઘાત સમીકરણ $x^2 + x\, sin\,\theta -2sin\,\theta = 0$, $\theta \in \left( {0,\frac{\pi }{2}} \right)$ ના ઉકેલો હોય તો $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha - \beta } \right)}^{24}}}}$ ની કિમત મેળવો.
સમીકરણ $x^{4}-3 x^{3}-2 x^{2}+3 x+1=10$ નાં તમામ બીજ ના ધનોંનો સરવાળો $\dots\dots\dots$ છે.
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
સમીકરણ ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ ને સંતોષતી $x $ ની બધીજ વાસ્તવિક કિંમતોનો સરવાળો . . . . છે.
$x$ ની બધી જ વાસ્તવિક કિંમતો માટે $\frac{x}{{{x^2}\, + \,4}}$ ની કિંમતનો વિસ્તાર કેટલો થશે ?