$x$ ની બધી જ વાસ્તવિક કિંમતો માટે $\frac{x}{{{x^2}\, + \,4}}$ ની કિંમતનો વિસ્તાર કેટલો થશે ?
$\frac{{ - 1}}{2}\,\, \le \,\,y\,\, \le \,\,\frac{1}{2}$
$\frac{{ - 1}}{4}\,\, \le \,\,y\,\, \le \,\,\frac{1}{4}$
$\frac{{ - 1}}{6}\,\, \le \,\,y\,\, \le \,\,\frac{1}{6}$
આપેલ પૈકી એકપણ નહિ.
જો $x^3 + 5x^2 - 7x - 1 = 0$ ના બીજ $\alpha$, $\beta$, $\gamma$ હોય, તો કયા સમીકરણના બીજ $\alpha$$\beta$, $\beta$$\gamma$, $\gamma$$\alpha$ હોય ?
જો $x$ એ વાસ્તવિક હોાય તો સમીકરણ $\frac{{{x^2} - 3x + 4}}{{{x^2} + 3x + 4}}$ નો કિંમતનો વિસ્તાર મેળવો.
સમીકરણ $x^2 + 4y^2 + 3z^2 - 2x - 12y - 6z + 14$ નું લઘુત્તમ મૂલ્ય કેટલું થાય ?
સમીકરણ $\frac{3}{{x - {a^3}}} + \frac{5}{{x - {a^5}}} + \frac{7}{{x - {a^7}}} = 0,a > 1$ ને
જો $x,\;y,\;z$ એ વાસ્તવિક અને ભિન્ન હોય તો $u = {x^2} + 4{y^2} + 9{z^2} - 6yz - 3zx - zxy$ એ હંમેશા . . .