Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
$4.5$
$1$
$-1$
$0$
If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),} $ then
The value of ${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }}$ is
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is
${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
The square root of $\sqrt {(50)} + \sqrt {(48)} $ is