The value of ${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }}$ is

  • A

    $\sqrt 5 (5 + \sqrt 2 )$

  • B

    $\sqrt 5 (2 + \sqrt 2 )$

  • C

    $\sqrt 5 (1 + \sqrt 2 )$

  • D

    $\sqrt 5 (3 + \sqrt 2 )$

Similar Questions

If $x = {{\sqrt 5 + \sqrt 2 } \over {\sqrt 5 - \sqrt 2 }},y = {{\sqrt 5 - \sqrt 2 } \over {\sqrt 5 + \sqrt 2 }},$ then $3{x^2} + 4xy - 3{y^2} = $

${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $

${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $

The square root of $\sqrt {(50)} + \sqrt {(48)} $ is

The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is