The value of ${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }}$ is
$\sqrt 5 (5 + \sqrt 2 )$
$\sqrt 5 (2 + \sqrt 2 )$
$\sqrt 5 (1 + \sqrt 2 )$
$\sqrt 5 (3 + \sqrt 2 )$
The cube root of $9\sqrt 3 + 11\sqrt 2 $ is
Solution of the equation ${4.9^{x - 1}} = 3\sqrt {({2^{2x + 1}})} $ has the solution
$\root 4 \of {(17 + 12\sqrt 2 )} = $
${{3\sqrt 2 } \over {\sqrt 6 + \sqrt 3 }} - {{4\sqrt 3 } \over {\sqrt 6 + \sqrt 2 }} + {{\sqrt 6 } \over {\sqrt 3 + \sqrt 2 }} = $
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$