${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
$1 + \sqrt 5 + \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 - \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 + \sqrt {10} - \sqrt 2 $
$1 - \sqrt 5 - \sqrt 2 + \sqrt {(10)} $
$\sqrt {(3 + \sqrt 5 )} $ is equal to
${{\sqrt {(5/2)} + \sqrt {(7 - 3\sqrt 5 )} } \over {\sqrt {(7/2)} + \sqrt {(16 - 5\sqrt 7 )} }}=$
The square root of $\frac{(0.75)^3}{1-(0.75)}+\left[0.75+(0.75)^2+1\right]$ is
If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $
The greatest number among $\root 3 \of 9 ,\root 4 \of {11} ,\root 6 \of {17} $ is