${{12} \over {3 + \sqrt 5 - 2\sqrt 2 }} = $
$1 + \sqrt 5 + \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 - \sqrt {(10)} + \sqrt 2 $
$1 + \sqrt 5 + \sqrt {10} - \sqrt 2 $
$1 - \sqrt 5 - \sqrt 2 + \sqrt {(10)} $
${{{{2.3}^{n + 1}} + {{7.3}^{n - 1}}} \over {{3^{n + 2}} - 2{{(1/3)}^{l - n}}}} = $
Solution of the equation ${9^x} - {2^{x + {1 \over 2}}} = {2^{x + {3 \over 2}}} - {3^{2x - 1}}$
If ${\left( {{2 \over 3}} \right)^{x + 2}} = {\left( {{3 \over 2}} \right)^{2 - 2x}},$then $x =$
Number of Solution of the equation ${(x)^{x\sqrt x }} = {(x\sqrt x )^x}$ are
The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $