The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is
$\sqrt 3 + \sqrt 7 $
$2\sqrt 3 + \sqrt 7 $
$\sqrt 3 + 2\sqrt 7 $
None of these
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
If ${({a^m})^n} = {a^{{m^n}}}$, then the value of $'m'$ in terms of $'n'$ is
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
Number of value/s of $x$ satisfy given eqution ${5^{x - 1}} + 5.{(0.2)^{x - 2}} = 26$.
${4 \over {1 + \sqrt 2 - \sqrt 3 }} = $