If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),}  $ then

  • A

    $a = b$

  • B

    $a + b = 0$

  • C

    $a > b$

  • D

    $a < b$

Similar Questions

Let ${7 \over {{2^{1/2}} + {2^{1/4}} + 1}}$$ = A + B{.2^{1/4}} + C{.2^{1/2}} + D{.2^{3/4}}$, then $A+B+C+D= . . .$

The rationalising factor of ${a^{1/3}} + {a^{ - 1/3}}$ is

${a^{m{{\log }_a}n}} = $

The equation $\sqrt {(x + 1)} - \sqrt {(x - 1)} = \sqrt {(4x - 1)} $, $x \in R$ has

If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $