If $a = \sqrt {(21)} - \sqrt {(20)} $ and $b = \sqrt {(18)} - \sqrt {(17),}  $ then

  • A

    $a = b$

  • B

    $a + b = 0$

  • C

    $a > b$

  • D

    $a < b$

Similar Questions

If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$

The value of ${{15} \over {\sqrt {10} + \sqrt {20} + \sqrt {40} - \sqrt 5 - \sqrt {80} }}$ is

The number of integers $q , 1 \leq q \leq 2021$, such that $\sqrt{ q }$ is rational, and $\frac{1}{ q }$ has a terminating decimal expansion, is

  • [KVPY 2021]

If ${2^x} = {4^y} = {8^z}$ and $xyz = 288,$ then ${1 \over {2x}} + {1 \over {4y}} + {1 \over {8z}} = $

The value of $\sqrt {[12 - \sqrt {(68 + 48\sqrt 2 )} ]} = $