The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
${2^{1/4}}(3 + \sqrt 2 )$
${2^{1/4}}(\sqrt 3 + 2)$
${2^{1/4}}(2 + \sqrt 2 )$
${2^{1/4}}(\sqrt 3 + \sqrt 2 )$
${{\sqrt {6 + 2\sqrt 3 + 2\sqrt 2 + 2\sqrt 6 } - 1} \over {\sqrt {5 + 2\sqrt 6 } }}$
If $x = \sqrt 7 + \sqrt 3 $ and $xy = 4,$then ${x^4} + {y^4}=$
$\sqrt {(3 + \sqrt 5 )} $ is equal to
$\root 4 \of {(17 + 12\sqrt 2 )} = $
The rationalising factor of $2\sqrt 3 - \sqrt 7 $ is