The square root of $\sqrt {(50)} + \sqrt {(48)} $ is
${2^{1/4}}(3 + \sqrt 2 )$
${2^{1/4}}(\sqrt 3 + 2)$
${2^{1/4}}(2 + \sqrt 2 )$
${2^{1/4}}(\sqrt 3 + \sqrt 2 )$
If ${a^{x - 1}} = bc,{b^{y - 1}} = ca,{c^{z - 1}} = ab,$then $\sum {(1/x) = } $
${{\sqrt 2 } \over {\sqrt {(2 + \sqrt 3 )} - \sqrt {(2 - \sqrt 3 } )}} = $
Solution of the equation $\sqrt {(x + 10)} + \sqrt {(x - 2)} = 6$ are
${({x^5})^{1/3}}{(16{x^3})^{2/3}}$${\left( {{1 \over 4}{x^{4/9}}} \right)^{ - 3/2}} = $
If ${a^x} = {b^y} = {(ab)^{xy}},$ then $x + y = $