ધારો કે  $S=\{z \in C:|z-1|=1$ અને  $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$.ધારો કે  $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ એવી છે કે જેથી  $\left|z_1\right|=\max _{z \in S}|z|$ અને  $\left|z_2\right|=\min _{z \in S}|z|$. તો  $\left|\sqrt{2} z_1-z_2\right|^2$....................

  • [JEE MAIN 2024]
  • A

    $1$

  • B

    $4$

  • C

    $3$

  • D

    $2$

Similar Questions

જો સંકર સંખ્યાઓ $z_1$ અને $z_2$ બંને એવા છે કે જેથી $z + \overline z  = 2 | z -1 |$ અને $arg(z_1 -z_2) = \frac{\pi}{3} ,$ થાય તો $Im (z_1 + z_2)$ ની કિમત મેળવો

જ્યાં $Im (z)$ એ $z$ નો કાલ્પનિક ભાગ દર્શાવે છે 

જો $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ એ વાસ્તવિક કિમંત હોય તો $\sin \theta+\mathrm{i} \cos \theta$  નો કોણાંક મેળવો.

  • [JEE MAIN 2020]

જો $z$, $w \in C$ માટે ${z^2} + \bar w = z$ અને ${w^2} + \bar z = w$ હોય તો સંકર સંખ્યા $(z, w)$ ની કેટલી જોડો મળે ? 

સંકર સંખ્યા $z$ માટે, $z + \bar z$ અને $z\,\bar z$ પૈકી એક   . . . . . બને.

જો $z$ એ સંકર સંખ્યા હોય, તો $z.\,\overline z = 0$ થવા માટે . . . .