ધારો કે $S=\{z \in C:|z-1|=1$ અને $(\sqrt{2}-1)(z+\bar{z})-i(z-\bar{z})=2 \sqrt{2}\}$.ધારો કે $\mathrm{z}_1, \mathrm{z}_2$ $\in S$ એવી છે કે જેથી $\left|z_1\right|=\max _{z \in S}|z|$ અને $\left|z_2\right|=\min _{z \in S}|z|$. તો $\left|\sqrt{2} z_1-z_2\right|^2$....................
$1$
$4$
$3$
$2$
જો સંકર સંખ્યાઓ $z_1$ અને $z_2$ બંને એવા છે કે જેથી $z + \overline z = 2 | z -1 |$ અને $arg(z_1 -z_2) = \frac{\pi}{3} ,$ થાય તો $Im (z_1 + z_2)$ ની કિમત મેળવો
જ્યાં $Im (z)$ એ $z$ નો કાલ્પનિક ભાગ દર્શાવે છે
જો $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi],$ એ વાસ્તવિક કિમંત હોય તો $\sin \theta+\mathrm{i} \cos \theta$ નો કોણાંક મેળવો.
જો $z$, $w \in C$ માટે ${z^2} + \bar w = z$ અને ${w^2} + \bar z = w$ હોય તો સંકર સંખ્યા $(z, w)$ ની કેટલી જોડો મળે ?
સંકર સંખ્યા $z$ માટે, $z + \bar z$ અને $z\,\bar z$ પૈકી એક . . . . . બને.
જો $z$ એ સંકર સંખ્યા હોય, તો $z.\,\overline z = 0$ થવા માટે . . . .