સમીકરણ સંહતિઓ $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ ને શૂન્યતર ઉકેલ હોય તો આપેલ પૈકી ક્યૂ સત્ય છે ?
$\mu=6, \lambda \in R$
$\lambda=2, \mu \in R$
$\lambda=3, \mu \in R$
$\mu=-6, \lambda \in R$
જો $\left| {\,\begin{array}{*{20}{c}}1&k&3\\3&k&{ - 2}\\2&3&{ - 1}\end{array}\,} \right| = 0$,તો $k$ ની કિમત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}a&b&{a - b}\\b&c&{b - c}\\2&1&0\end{array}\,} \right|=0$ હોય તો $a,b,c$ એ . . . શ્રેણીમાં છે.
સુરેખ સમીકરણ સંહતિ $a x+y+z=1$, $x+a y+z=1, x+y+a z=\beta$ માટે,નીચેના પૈકી કયું વિધાન સાચું નથી?
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
બે પાસાને ઉછાળવામાં આવે છે. તેમની પરના અંકોને $\lambda$ અને $\mu$ લેવામાં આવે છે અને સમીકરણ સંહતિ
$x+y+z=5$ ; $x+2 y+3 z=\mu$ ; $x+3 y+\lambda z=1$
ને બનાવમાં આવે છે.જો $\mathrm{p}$ એ સમીકરણ સંહતિને એકાકી ઉકેલ હોય તેની સંભાવના દર્શાવે છે અને $\mathrm{q}$ એ સમીકરણ સંહતિનો ઉકેલગણ ખાલીગણ છે તેની સંભાવના દર્શાવે છે તો