Let the system of linear equations $4 x+\lambda y+2 z=0$ ; $2 x-y+z=0$ ; $\mu x +2 y +3 z =0, \lambda, \mu \in R$ has a non-trivial solution. Then which of the following is true?
$\mu=6, \lambda \in R$
$\lambda=2, \mu \in R$
$\lambda=3, \mu \in R$
$\mu=-6, \lambda \in R$
Let $A = \left[ {\begin{array}{*{20}{c}}
2&b&1 \\
b&{{b^2} + 1}&b \\
1&b&2
\end{array}} \right]$ where $b > 0$. Then the minimum value of $\frac{{\det \left( A \right)}}{b}$ is
If area of triangle is $35$ $\mathrm{sq}$ $\mathrm{units}$ with vertices $(2,-6),(5,4)$ and $(\mathrm{k}, 4) .$ Then $\mathrm{k}$ is
If the system of linear equations $x - 2y + kz = 1$ ; $2x + y + z = 2$ ; $3x - y - kz = 3$ Has a solution $(x, y, z) \ne 0$, then $(x, y)$ lies on the straight line whose equation is
The value of $a$ for which the system of equations
$a^3x + ( a + 1)^3y + (a + 2)^3z = 0$ ; $ax + (a + 1) y + ( a + 2) z = 0$ ; $x + y + z = 0$, has a non zero solution is
The number of values of $\theta \in (0,\pi)$ for which the system of linear equations
$x + 3y + 7z = 0$
$-x + 4y + 7z = 0$
$(sin\,3\theta )x + (cos\,2\theta )y + 2z = 0$ has a non-trivial solution, is