माना $100$ छात्रों की कक्षा $\mathrm{A}$ के छात्रों के अंको के माध्य तथा मानक विचलन क्रमशः $40$ तथा $\alpha(>0)$ है तथा $\mathrm{n}$ छात्रों की कक्षा $\mathrm{B}$ के छात्रों के अंकों के माध्य तथा मानक विचलन क्रमशः $55$ तथा $30-\alpha$ है। यदि संयुक्त कक्षा के $100+\mathrm{n}$ छात्रों के अंकों मे माध्य तथा प्रसरण क्रमशः $50$ तथा $350$ हैं, तो कक्षाओं $\mathrm{A}$ तथा $\mathrm{B}$ के प्रसरणों का योग है :
$500$
$650$
$450$
$900$
यदि संख्याओं $2,3, a$ तथा $11$ का मानक विचलन $3.5$ है, तो निम्न में से कौन-सा सत्य है?
सात प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ है। यदि इनमें से $5$ प्रेक्षण $2,4,10,12,14$ है, तो शेष दो प्रेक्षणों का गुणनफल है
यदि $\sum_{ i =1}^{ n }\left( x _{ i }- a \right)= n \quad$ तथा $\quad \sum_{ i =1}^{ n }\left( x _{ i }- a \right)^{2}= na$, $( n , a >1)$ हैं, तो $n$ प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{ n }$ का मानक विचलन है
निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
माना एक कक्षा में $7$ विद्यार्थी है। गणित परीक्षा में इन छात्रों के औसत अंक $62$ तथा इनका प्रसरण $20$ है। एक विद्यार्थी परीक्षा में अनुत्तीर्ण हो जाता है यदि उसे $50$ से कम अंक प्राप्त होते है, तो सबसे खराब स्थिति में, असफल छात्रों की संख्या हो सकती है