Let the mean and standard deviation of marks of class $A$ of $100$ students be respectively $40$ and $\alpha( > 0)$, and the mean and standard deviation of marks of class $B$ of $n$ students be respectively $55$ and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+ n$ students are respectively $50$ and $350$,then the sum of variances of classes $A$ and $B$ is 

  • [JEE MAIN 2023]
  • A

    $500$

  • B

    $650$

  • C

    $450$

  • D

    $900$

Similar Questions

The $S.D$. of the first $n$ natural numbers is

Let $9 < x_1 < x_2 < \ldots < x_7$ be in an $A.P.$ with common difference $d$. If the standard deviation of $x_1, x_2 \ldots$, $x _7$ is $4$ and the mean is $\overline{ x }$, then $\overline{ x }+ x _6$ is equal to:

  • [JEE MAIN 2023]

Let $y_1$ , $y_2$ , $y_3$ ,..... $y_n$ be $n$ observations. Let ${w_i} = l{y_i} + k\,\,\forall \,\,i = 1,2,3.....,n,$ where $l$ , $k$ are constants. If the mean of  $y_i's$ is  is $48$ and their standard deviation is $12$ , then mean of $w_i's$ is $55$ and standard deviation of $w_i's$  is $15$ , then values of $l$ and $k$ should be

If the mean and variance of the following data:

$6,10,7,13, a, 12, b, 12$ are 9 and $\frac{37}{4}$ respectively, then $(a-b)^{2}$ is equal to:

  • [JEE MAIN 2021]

The means of five observations is $4$ and their variance is $5.2$. If three of these observations are $1, 2$ and $6$, then the other two are