Let the mean and standard deviation of marks of class $A$ of $100$ students be respectively $40$ and $\alpha( > 0)$, and the mean and standard deviation of marks of class $B$ of $n$ students be respectively $55$ and $30-\alpha$. If the mean and variance of the marks of the combined class of $100+ n$ students are respectively $50$ and $350$,then the sum of variances of classes $A$ and $B$ is
$500$
$650$
$450$
$900$
The mean and $S.D.$ of $1, 2, 3, 4, 5, 6$ is
The mean of $5$ observations is $4.4$ and their variance is $8.24$. If three observations are $1, 2$ and $6$, the other two observations are
Consider the statistics of two sets of observations as follows :
Size | Mean | Variance | |
Observation $I$ | $10$ | $2$ | $2$ |
Observation $II$ | $n$ | $3$ | $1$ |
If the variance of the combined set of these two observations is $\frac{17}{9},$ then the value of $n$ is equal to ..... .
Let $X _{1}, X _{2}, \ldots, X _{18}$ be eighteen observations such that $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ and $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ where $\alpha$ and $\beta$ are distinct real numbers. If the standard deviation of these observations is $1,$ then the value of $|\alpha-\beta|$ is ...... .
Let sets $A$ and $B$ have $5$ elements each. Let the mean of the elements in sets $A$ and $B$ be $5$ and $8$ respectively and the variance of the elements in sets $A$ and $B$ be $12$ and $20$ respectively $A$ new set $C$ of $10$ elements is formed by subtracting $3$ from each element of $A$ and adding 2 to each element of B. Then the sum of the mean and variance of the elements of $C$ is $.......$.