Let n and k be positive integers such that $n \ge \frac{{k(k + 1)}}{2}$. The number of solutions $({x_1},{x_2},....{x_k})$, ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ all integers, satisfying ${x_1} + {x_2} + .... + {x_k} = n$, is

  • [IIT 1996]
  • A

    $^m{C_{k - 1}}$

  • B

    $^m{C_{k + 1}}$

  • C

    $^m{C_k}$

  • D

    None of these {Where $m = \frac{1}{2}(2n - {k^2} + k - 2)$}

Similar Questions

If ${}^{21}{C_1} + 3.{}^{21}{C_3} + 5.{}^{21}{C_5} + ......19{}^{21}{C_{19}} + 21.{}^{21}{C_{21}} = k$ Then number of prime factors of $k$ is

For natural numbers $m,n$ ,if ${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + \ldots \;$ and $a_1= a_2=10,$ then $(m,n)$ =______. 

  • [AIEEE 2006]

The value of $\sum_{ r =0}^{6}\left({ }^{6} C _{ r }{ }^{-6} C _{6- r }\right)$ is equal to :

  • [JEE MAIN 2021]

The sum of the coefficients in the expansion of ${(x + y)^n}$ is $4096$. The greatest coefficient in the expansion is

  • [AIEEE 2002]

Let $\left( a + bx + cx ^2\right)^{10}=\sum \limits_{ i =0}^{20} p _{ i } x ^{ i }, a , b , c \in N$. If $p _1=20$ and $p _2=210$, then $2( a + b + c )$ is equal to

  • [JEE MAIN 2023]