Let n and k be positive integers such that $n \ge \frac{{k(k + 1)}}{2}$. The number of solutions $({x_1},{x_2},....{x_k})$, ${x_1} \ge 1,{x_2} \ge 2,....{x_k} \ge k,$ all integers, satisfying ${x_1} + {x_2} + .... + {x_k} = n$, is

  • [IIT 1996]
  • A

    $^m{C_{k - 1}}$

  • B

    $^m{C_{k + 1}}$

  • C

    $^m{C_k}$

  • D

    None of these {Where $m = \frac{1}{2}(2n - {k^2} + k - 2)$}

Similar Questions

 ધારો કે $\alpha=\sum_{r=0}^n\left(4 r^2+2 r+1\right)^n C_r$ અને $\beta=\left(\sum_{r=0}^n \frac{{ }^n C_r}{r+1}\right)+\frac{1}{n+1} \cdot$ જો $140 < \frac{2 \alpha}{\beta}<281$ તો $n$ નું મૂલ્ય .......... છે.

  • [JEE MAIN 2024]

${(1 + x)^{50}}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.

${(1 + x - 3{x^2})^{2163}}$ વિસ્તરણમાં સહગુણકોનો સરવાળો મેળવો.

  • [IIT 1982]

ધારો કે  $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ અને  $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. છે. જો  $5 \alpha=6 \beta$, હોય તો  $n$=...........................

  • [JEE MAIN 2024]

$(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$  ના વિસ્તરણમાં $x^{64}$ નો સહગુણક મેળવો