माना $2 n$ प्रेक्षणों की एक शंखला में, आधे $a$ के बराबर है तथा शेष आधे $- a$ के बराबर है। प्रत्येक प्रेक्षण में एक अचर $b$ जोड़ने पर नये समूह का माध्य तथा मानक विचलन क्रमशः $5$ तथा $20$ हैं। तो $a ^{2}+ b ^{2}$ का मान बराबर है

  • [JEE MAIN 2021]
  • A

    $425$

  • B

    $650$

  • C

    $250$

  • D

    $925$

Similar Questions

नीचे दी गई प्रेक्षणों के दो समूहों की सांख्यिकी का विचार कीजिए 

  आकार माध्य  प्रसरण 
प्रेक्षण $I$ $10$ $2$ $2$
 प्रेक्षण $II$ $n$ $3$ $1$

यदि इन दोनों प्रेक्षणों को मिलाकर बने समूह का प्रसरण $\frac{17}{9}$ है, तो $n$ का मान बराबर है

  • [JEE MAIN 2021]

यदि $n$ प्रेक्षणों $x_{1}, x_{2}, \ldots, x_{n}$ का माध्य $\bar{x}$ तथा प्रसरण $\sigma^{2}$ हैं तो सिद्ध कीजिए कि प्रेक्षणों $a x_{1}$, $a x_{2}, a x_{3}, \ldots, a x_{n}$ का माध्य और प्रसरण क्रमश: $a \bar{x}$ तथा $a^{2} \sigma^{2}(a \neq 0)$ हैं।

एक समूह की पाँच संख्याओं का माध्य $8$ तथा प्रसरण $18$ है तथा दूसरे समूह की $3$ संख्याओं का माध्य $8$ तथा प्रसरण $24$ है। तब संख्याओं के संयुक्त समूह का प्रसरण है

यदि बारंबारता बंटन

$x_i$ $2$ $4$ $6$ $8$ $10$ $12$ $14$ $16$
$f_i$ $4$ $4$ $\alpha$ $15$ $8$ $\beta$ $4$ $5$

के माध्य तथा प्रसरण क्रमशः $9$ तथा $15.08$ हैं, तो $\alpha^2+\beta^2-\alpha \beta$ का मान है________________

  • [JEE MAIN 2023]

निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

${x_i}$ $6$ $10$ $14$ $18$ $24$ $28$ $30$
${f_i}$ $2$ $4$ $7$ $12$ $8$ $4$ $3$