एक दीर्घवत्त, $E : \frac{ x ^{2}}{ a ^{2}}+\frac{ y ^{2}}{ b ^{2}}=1, a ^{2}> b ^{2}$, बिन्दु $\left(\sqrt{\frac{3}{2}}, 1\right)$ से होकर जाता है तथा उसकी उत्केन्द्रता $\frac{1}{\sqrt{3}}$ है। यदि एक वत्त जिसका केन्द्र $E$ की नाभि $F (\alpha, 0), \alpha>0$ पर और त्रिज्या $\frac{2}{\sqrt{3}}$ है, दीर्घवत्त $E$ को दो बिन्दुओं $P$ तथा $Q$ पर काटता है, तो $PQ ^{2}$ बराबर है

  • [JEE MAIN 2021]
  • A

    $\frac{8}{3}$

  • B

    $\frac{4}{3}$

  • C

    $3$

  • D

    $\frac{16}{3}$

Similar Questions

यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के किसी बिन्दु $P$ पर खींचे गये अभिलम्ब निर्देशांकों को $G$ व $g$ पर मिलते हैं, तो $PG:Pg = $

दीर्घवृत्त का समीकरण जिसकी नाभि $(-1,1)$ है जिसकी नियता $x - y + 3 = 0$ तथा जिसकी उत्केन्द्रता $\frac{1}{2}$ है , होगा

$100$ व्यक्तियों के एक समूह में $75$ अंग्रेजी बोलते हैं तथा $40$ हिंदी बोलते हैं। प्रत्येक व्यक्ति इन दो भाषाओं में से कम से कम एक बोलता है। यदि केवल अंग्रेजी बोलने वाले व्यक्तियों की संख्या $\alpha$ तथा केवल हिंदी बोलने वाले व्यक्तियों की संख्या $\beta$ है, तो दीर्घवृत्त $25\left(\beta^2 x^2+\alpha^2 y^2\right)=\alpha^2 \beta^2$ की उत्केन्द्रता है

  • [JEE MAIN 2023]

उस दीर्घवृत्त का समीकरण जिसका केन्द्र मूलबिन्दु है तथा जो बिन्दुओं $(-3, 1)$ तथा $(2, -2)$ से गुजरता है, है

दीर्घवृत्तों $\mathrm{E}_{\mathrm{k}}: \mathrm{kx}^2+\mathrm{k}^2 \mathrm{y}^2=1, \mathrm{k}=1,2, \ldots ., 20$ का विचार कीजिए। माना $C_k$ वह वृत्त है, जो दीर्घवृत्त $E_k$ के अन्त्य बिंदुओं (एक लघु अक्ष पर तथा दूसरा दीर्घ अक्ष पर) को मिलाने वाली चार जीवाओं को स्पर्श करता है। यदि वृत्त $C_k$ की त्रिज्या $r_k$ है, तो $\sum_{\mathrm{k}=1}^{20} \frac{1}{\mathrm{r}_{\mathrm{k}}^2}$ का मान है :

  • [JEE MAIN 2023]