Let an ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$, passes through $\left(\sqrt{\frac{3}{2}}, 1\right)$ and has ecentricity $\frac{1}{\sqrt{3}} .$ If a circle, centered at focus $\mathrm{F}(\alpha, 0), \alpha>0$, of $\mathrm{E}$ and radius $\frac{2}{\sqrt{3}}$, intersects $\mathrm{E}$ at two points $\mathrm{P}$ and $\mathrm{Q}$, then $\mathrm{PQ}^{2}$ is equal to:
$\frac{8}{3}$
$\frac{4}{3}$
$3$
$\frac{16}{3}$
Let the tangent and normal at the point $(3 \sqrt{3}, 1)$ on the ellipse $\frac{x^2}{36}+\frac{y^2}{4}=1$ meet the $y$-axis at the points $A$ and $B$ respectively. Let the circle $C$ be drawn taking $A B$ as a diameter and the line $x =2 \sqrt{5}$ intersect $C$ at the points $P$ and $Q$. If the tangents at the points $P$ and $Q$ on the circle intersect at the point $(\alpha, \beta)$, then $\alpha^2-\beta^2$ is equal to
The locus of the mid point of the line segment joining the point $(4,3)$ and the points on the ellipse $x^{2}+2 y^{2}=4$ is an ellipse with eccentricity
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.
If the foci and vertices of an ellipse be $( \pm 1,\;0)$ and $( \pm 2,\;0)$, then the minor axis of the ellipse is
On the ellipse $4{x^2} + 9{y^2} = 1$, the points at which the tangents are parallel to the line $8x = 9y$ are