यदि दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के किसी बिन्दु $P$ पर खींचे गये अभिलम्ब निर्देशांकों को $G$ व $g$ पर मिलते हैं, तो $PG:Pg = $
$a:b$
${a^2}:{b^2}$
${b^2}:{a^2}$
$b:a$
यदि $\theta $ तथा $\phi $, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के संयुग्मी व्यासों के सिरों के उत्केन्द्र कोण हैं, तो $\theta - \phi $ बराबर होगा
दीर्घवृत्त $\frac{{{{(x + y - 2)}^2}}}{9} + \frac{{{{(x - y)}^2}}}{{16}} = 1$ का केन्द्र है
यदि दीर्घवृत्त के लघु अक्ष की लम्बाई, इसकी नाभियों के बीच की दूरी की आधी है, तो इस दीर्घवत्त की उत्केन्द्रता है :
माना कि दीर्घ वृत्त $\frac{x^2}{9}+\frac{y^2}{5}=1$ की नाभियाँ (foci) ( $\left.f_1, 0\right)$ और $\left(f_2, 0\right)$ है, जहाँ $f_1>0$ और $f_2<0$ है। माना कि $P_1$ एवं $P_2$ दो परवलय (parabola) है जिनकी नाभियाँ क्रमशः $\left(f_1, 0\right)$ तथा $\left(2 f_2, 0\right)$ हैं तथा दोनों के शीर्प (vertex) $(0,0)$ है। माना कि $P_1$ की स्पर्श रेखा $T_1$ बिन्दु $\left(2 f_2, 0\right)$ से, एवं $P_2$ की स्पर्श रेखा $T_2$ विन्दु $\left(f_1, 0\right)$ से गुजरती हैं। यदि $T_1$ की प्रवणता (slope) $m_1$ हो, हो और $T _2$ की प्रवणता $m _2$ हो, तव $\left(\frac{1}{ m _1^2}+ m _2^2\right)$ का मान है
उस दीर्घवृत्त का समीकरण जिसकी नाभियाँ के बीच की दूरी $8$ एवं नियताओं के बीच की दूरी $18$ है, होगा