અહી ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$ બિંદુ $\left(\sqrt{\frac{3}{2}}, 1\right)$ માંથી પસાર થાય છે અને ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}} $ આપેલ છે . જો વર્તુળનું કેન્દ્ર એ ઉપવલય $E$ ની નાભી $\mathrm{F}(\alpha, 0), \alpha>0$ હોય અને ત્રિજ્યા $\frac{2}{\sqrt{3}}$ આપેલ છે . વર્તુળએ ઉપવલય $\mathrm{E}$ ને બે બિંદુઓ $\mathrm{P}$ અને $\mathrm{Q}$ માં છેદે છે તો $\mathrm{PQ}^{2}$ ની કિમંત મેળવો.
$\frac{8}{3}$
$\frac{4}{3}$
$3$
$\frac{16}{3}$
ઉપવલય $2x^2 + 5y^2 = 20$ ની જીવાનું સમીકરણ મેળવો કે જે બિંદુ $(2, 1)$ આગળ દ્વિભાજીત થાય..
જેનું કેન્દ્ર ઊગમબિંદુ આગળ છે એવા ઉપવલયની ઉત્કેન્દ્રતા $\frac{1}{2}$ છે. જો તેની એક નિયામીકા $x = - 4$ હોય,તો $\left( {1,\frac{3}{2}} \right)$ આગળ તેના અભિલંબનું સમીકરણ . . . છે. .
આપેલ શરતોનું સમાધાન કરતા ઉપવલયનું સમીકરણ શોધોઃ શિરોબિંદુઓ $(\pm 6,\,0),$, નાભિઓ $(\pm 4,\,0)$
ઉપવલય $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1, \mathrm{a}>\mathrm{b}$ ની નાભિ અને નાભિલંબની લંબાઈ અનુક્રમે $( \pm 5,0)$ અને $\sqrt{50}$ છે, તો અતિવલય $\frac{x^2}{a^2}-\frac{y^2}{a^2 b^2}=1$ ની ઉત્કેન્દ્રતાનો વર્ગ.........................
બિંદુ $(-3,-5)$ અને ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ પરના બિંદુને જોડતા રેખાખંડના મધ્યબિંદુના બિંદુપથનું સમીકરણ મેળવો.