माना दो घटनायें $A$ व $B$ इस प्रकार हैं कि $P\,(A) = 0.3$ एवं $P\,(A \cup B) = 0.8$ यदि $A$ व $B$ स्वतंत्र घटनायें हैं तो $P(B)$ का मान है

  • [IIT 1990]
  • A

    $\frac{5}{6}$

  • B

    $\frac{5}{7}$

  • C

    $\frac{3}{5}$

  • D

    $\frac{2}{5}$

Similar Questions

संतरों के एक डिब्बे का निरीक्षण उसमें से तीन संतरों को यादृच्छया बिना प्रतिस्थापित किए हुए निकाल कर किया जाता है। यदि तीनों निकाले गए संतरे अच्छे हों तो डिब्बे को बिक्री के लिए स्वीकृत किया जाता है अन्यथा अस्वीकृत कर देते हैं। एक डिब्बा जिसमें $15$ संतरे हैं जिनमें से $12$ अच्छे व $3$ खराब संतरे हैं, के बिक्री के लिए स्वीकृत होने की प्रायिकता ज्ञात कीजिए।

तीन घटनाओं $A , B$ तथा $C$ की प्रायिकताएं $P ( A )=0.6$, $P ( B )=0.4$ तथा $P ( C )=0.5$ है। यदि $P ( A \cup B )=0.8$, $P ( A \cap C )=0.3, P ( A \cap B \cap C )=0.2, P ( B \cap$ $C )=\beta$ तथा $P ( A \cup B \cup C )=\alpha$, जहाँ $0.85 \leq \alpha \leq 0.95$, तो $\beta$ निम्न में से किस अंतराल में है 

  • [JEE MAIN 2020]

माना स्वतंत्र घटनाओं $A$ तथा $B$ के लिए $P ( A )= p$ तथा $P ( B )=2 p$ हैं। तो $p$ का अधिकतम मान, जिसके लिए $P ( A$ तथा $B$ में से ठीक एक घटित होती है $)=\frac{5}{9}$ है

  • [JEE MAIN 2021]

किसी विद्यार्थी के $IIT$ परीक्षा में सफल होने की प्रायिकता $0.2$ एवं रूड़की परीक्षा में सफल होने की प्रायिकता $0.5$ है। यदि उसके दोनों परीक्षाओं में सफल होने की प्रायिकता $0.3$ है, तो उसके दोनों परीक्षाओं में असफल होने की प्रायिकता होगी

एक विशेष समस्या को $A$ और $B$ द्वारा स्वतंत्र रूप से हल करने की प्रायिकताएँ क्रमश : $\frac{1}{2}$ और $\frac{1}{3}$ हैं। यदि दोनों, स्वतंत्र रूप से, समस्या हल करने का प्रयास करते हैं, तो प्रायिकता ज्ञात कीजिए कि
समस्या हल हो जाती है।