संतरों के एक डिब्बे का निरीक्षण उसमें से तीन संतरों को यादृच्छया बिना प्रतिस्थापित किए हुए निकाल कर किया जाता है। यदि तीनों निकाले गए संतरे अच्छे हों तो डिब्बे को बिक्री के लिए स्वीकृत किया जाता है अन्यथा अस्वीकृत कर देते हैं। एक डिब्बा जिसमें $15$ संतरे हैं जिनमें से $12$ अच्छे व $3$ खराब संतरे हैं, के बिक्री के लिए स्वीकृत होने की प्रायिकता ज्ञात कीजिए।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Let $A, B,$ and $C$ be the respective events that the first, second, and the third drawn orange is good.

Therefore, probability that first drawn orange is good, $\mathrm{P}(\mathrm{A})=\frac{12}{15}$

The oranges are not replaced.

Therefore, probability of getting second orange good, $\mathrm{P}(\mathrm{B})=\frac{11}{14}$

Similarly, probability of getting third orange good, $\mathrm{P}(\mathrm{C})=\frac{10}{13}$

The box is approved for sale, if all the three oranges are good.

Thus, probability of getting all the oranges good $=\frac{12}{15} \times \frac{11}{14} \times \frac{10}{13}=\frac{44}{91}$

Therefore, the probability that the box is approved for sale is $\frac{44}{91}$.

Similar Questions

यदि ${A_1},\,{A_2},...{A_n}$ कोई $n$ घटनायें हैं, तो

एक पाठशाला की कक्षा $XI$ के $40 \%$ विद्यार्थी गणित पढते हैं और $30 \%$ जीव विज्ञान पढते हैं। कक्षा के $10 \%$ विद्यार्थी गणित और जीव विज्ञान दोनों पढते हैं। यदि कक्षा का एक विद्यार्थी यादृच्छया चुना जाता है , तो प्रायिकता ज्ञात कीजिए कि वह गणित या जीव विज्ञान पढ़ता होगा।

एक संस्था के कर्मचारियों में से $5$ कर्मचारियों का चयन प्रबंध समिति के लिए किया गया है। पाँच कर्मचारियों का ब्योरा निम्नलिखित है

क्रम. नाम लिंग आयु ( वर्षो में )
$1.$ हरीश $M$ $30$
$2.$ रोहन $M$ $33$
$3.$ शीतल $F$ $46$
$4.$ ऐलिस $F$ $28$
$5.$ सलीम $M$ $41$

इस समूह से प्रवक्ता पद के लिए यादृच्छ्या एक व्यक्ति का चयन किया गया। प्रवक्ता के पुरुष या $35$ वर्ष से अधिक आयु का होने की क्या प्रायिकता है ?

$125$ विद्यार्थियों की एक कक्षा में $70$ गणित में, $55$ सांख्यिकी में एवं $30$ दोनों में उत्तीर्ण होते हैं। कक्षा में एक विद्याथि के चुनने पर इसके केवल एक विषय में उत्तीर्ण होने की प्रायिकता होगी

एक परीक्षण (experiment) पर विचार कीजिए जिसमें एक सिक्के को बार बार लगातार उछाला जाता है और जैसे ही दो क्रमागत (consecutive) उछालों का परिणाम (outcome) समान आता है, परीक्षण रोक दिया जाता है। यदि एक याद्धच्छिक उछाल का परिणाम चित्त में (random toss resulting in head) होने की प्रायिकता $\frac{1}{3}$ है, तब परीक्षण के चित्त (head) के साथ रुकने कि प्रायिकता है

  • [IIT 2023]