જો $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ એ વાસ્તવિક વિધેય છે તો $f\,'(x)$ એ $1 < x < 26$ માટે મેળવો.
$0$
${1 \over {\sqrt {x - 1} }}$
$2\sqrt {x - 1} - 5$
એકપણ નહીં.
વિધેય ${{{x^2} - 3x} \over {x - 1}}$ એ . . . અંતરાલ માટે રોલ ના પ્રમેયની શરતો નું પાલન કરે છે .
વિધેય $f\left( x \right) = \log x$ નો અંતરાલ $[1,3]$ માટે મધ્યકમાન પ્રમેય નો ઉપયોગ કરી $C$ ની કિંમત મેળવો.
જો $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ અને $a_0$ , $a_2$ અને $a_1$ એ સમાંતર શ્રેણીમાં હોય તો $n$ ની કેટલી શક્ય કિમંતો મળે.
અંતરાલ $[-2, 2]$ માં, વક્ર $y = {x^3}$ પરના બિંદુનો $x-$ યામ મેળવો કે જેનો સ્પર્શકનો ઢાળએ અંતરાલ $[-2, 2]$ માં મધ્યક પ્રમેય મુજબ મેળવી શકાય છે.
જો $f(x) = (x-4)(x-5)(x-6)(x-7)$ તો