વિધેય $f\left( x \right) = \log x$ નો અંતરાલ $[1,3]$ માટે મધ્યકમાન પ્રમેય નો ઉપયોગ કરી $C$ ની કિંમત મેળવો.
$2{\log _3}e$
$\frac{1}{2}{\log _e}3$
$\;{\log _3}e$
${\log _e}3$
$x \in[-4,2]$ માં વિધેય $f(x)=x^{2}+2 x-8$ માટે રોલનું પ્રમેય ચકાસો.
વિધેય $f(x) = x(x + 3){e^{ - (1/2)x}}$ એ અંતરાલ $[-3, 0]$ માં રોલના પ્રમેયનું પાલન કરે છે તો $c$ ની કિમંત મેળવો.
$f(x)$ એ $[1,2]$ પર સતત અને $(1,2)$ પર વિકલનીય આપેલ છે જે $f(1) = 2, f(2) = 3$ અને $f'(x) \geq 1 \forall x \in (1,2)$ નું પાલન કરે છે અને $g(x)=\int\limits_1^x {f(t)\,dt\,\forall \,x\, \in [1,2]} $ દ્વારા વ્યાખ્યાયિત છે તો $[1,2]$ પર $g(x)$ ની મહતમ કિમંત મેળવો.
જો $c = \frac {1}{2}$ અને $f(x) = 2x -x^2$ એ અંતરાલ $x$ પર મધ્યકમાન પ્રમેય પાલન કરે છે તો $x$ મેળવો.
વિધેય $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-4 \mathrm{x}^{2}+8 \mathrm{x}+11$ કે જ્યાં $\mathrm{x} \in[0,1]$ માં મ્ધયકમાન પ્રમેય અનુસાર $c$ ની કિમંત મેળવો.