Let $f(x) = \sqrt {x - 1} + \sqrt {x + 24 - 10\sqrt {x - 1} ;} $ $1 < x < 26$ be real valued function. Then $f\,'(x)$ for $1 < x < 26$ is
$0$
${1 \over {\sqrt {x - 1} }}$
$2\sqrt {x - 1} - 5$
None of these
If $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ and $a_0$ , $a_2$ and $a_1$ are in $A$ . $P$ .,then there exists
Let $f(x) = 8x^3 - 6x^2 - 2x + 1,$ then
Let $f, g:[-1,2] \rightarrow R$ be continuous functions which are twice differentiable on the interval $(-1,2)$. Let the values of $f$ and $g$ at the points $-1.0$ and $2$ be as given in the following table:
$x=-1$ | $x=0$ | $x=2$ | |
$f(x)$ | $3$ | $6$ | $0$ |
$g(x)$ | $0$ | $1$ | $-1$ |
In each of the intervals $(-1,0)$ and $(0,2)$ the function $(f-3 g)^{\prime \prime}$ never vanishes. Then the correct statement(s) is(are)
$(A)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly three solutions in $(-1,0) \cup(0,2)$
$(B)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(-1,0)$
$(C)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly one solution in $(0,2)$
$(D)$ $f^{\prime}(x)-3 g^{\prime}(x)=0$ has exactly two solutions in $(-1,0)$ and exactly two solutions in $(0,2)$
If $f:R \to R$ and $f(x)$ is a polynomial function of degree ten with $f(x)=0$ has all real and distinct roots. Then the equation ${\left( {f'\left( x \right)} \right)^2} - f\left( x \right)f''\left( x \right) = 0$ has
Let $f(x)=2+\cos x$ for all real $x$.
$STATEMENT -1$ : For each real $\mathrm{t}$, there exists a point $\mathrm{c}$ in $[\mathrm{t}, \mathrm{t}+\pi]$ such that $\mathrm{f}^{\prime}(\mathrm{c})=0$. because
$STATEMENT -2$: $f(t)=f(t+2 \pi)$ for each real $t$.