જો $(1 -x + 2x^2)^n$ = $a_0 + a_1x + a_2x^2+..... a_{2n}x^{2n}$ , $n \in N$ , $x \in R$ અને  $a_0$ , $a_2$ અને  $a_1$ એ સમાંતર શ્રેણીમાં હોય તો $n$ ની કેટલી શક્ય કિમંતો મળે.

  • A

    માત્ર બેજ 

  • B

    માત્ર એક્જ

  • C

    માત્ર ત્રણજ 

  • D

    એકપણ પણ કિમંત ન મળે.

Similar Questions

વિધેય $f(x) = 2{x^3} + b{x^2} + cx,\,x\, \in \,\left[ { - 1,1} \right]$ એ $x = \frac{1}{2}$ આગળ રોલના પ્રમેયનું પાલન કરે છે તો  $(2b+c)$ મેળવો.

અંતરાલ $[1, a]$ પર વિધેય $f(x) = 2x^2 + 3x + 5$ એ $x = 3$ આગળ મધ્યકમાન પ્રમેયનું પાલન કરે છે તો $a$ ની કિમંત મેળવો.

ધારો કે $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ અચળ ન હોય તેવો દ્રિવિકલનીય વિધેય છે જ્યાં $\mathrm{g}\left(\frac{1}{2}\right)=\mathrm{g}\left(\frac{3}{2}\right)$. જો વાસ્તવિક મૂલ્યવાળું વિધેય $F$ એ $f(x)=\frac{1}{2}[g(x)+\mathrm{g}(2-x)]$ ] પ્રમાણે  વ્યાખ્યાયિત થાય, તો: 

  • [JEE MAIN 2024]

જો $f(x)$ = $sin^2x + xsin2x.logx$, હોય તો $f(x)$ = $0$ ને  . . . .. 

મધ્યકમાન પ્રમેય પરથી , $f'({x_1}) = {{f(b) - f(a)} \over {b - a}}$, તો . . . .