જો $z,w$ એ સંકર સંખ્યા છે કે જેથી $\overline z + i\overline w = 0$ અને $arg\,\,zw = \pi $ તો arg z મેળવો.
$5\pi /4$
$\pi /2$
$3\pi /4$
$\pi /4$
ધારોકે $S=\left\{z \in C : z^{2}+\bar{z}=0\right\}$ છે. તો $\sum \limits_{z \in S}(\operatorname{Re}(z)+\operatorname{Im}(z))$ is equal to$......$
જો $z_1$ અને $z_2$ એવી સંકર સંખ્યા કે જેથી $3\left| {{z_1}} \right| = 4\left| {{z_2}} \right|$ થાય. તો $z = \frac{{3{z_1}}}{{2{z_2}}} + \frac{{2{z_2}}}{{3{z_1}}}$ ની કિમત મેળવો.
જો $z_1, z_2 \in C$ એવા મળે કે જેથી $| z_1 + z_2 |= \sqrt 3$ અને $|z_1| = |z_2| = 1,$ થાય તો $|z_1 - z_2|$ ની કિમત મેળવો
જો $z$ અને $w$ બે સંકર સંખ્યા છે કે જેથી $|z|\, = \,|w|$ અને $arg\,z + arg\,w = \pi $. તો $z$ મેળવો.
જો $z$ એ સંકર સંખ્યા છે કે જેથી $|z - \bar{z}| = 2$ અને $|z + \bar{z}| = 4 $, હોય તો નીચેનામાંથી ક્યૂ ખોટું છે ?