Let $z,w$be complex numbers such that $\overline z + i\overline w = 0$and $arg\,\,zw = \pi $. Then arg z equals
$5\pi /4$
$\pi /2$
$3\pi /4$
$\pi /4$
Find the conjugate of $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$.
The amplitude of $\frac{{1 + \sqrt 3 i}}{{\sqrt 3 + 1}}$ is
If $z$ and $\omega $ are two non-zero complex numbers such that $|z\omega |\, = 1$ and $arg(z) - arg(\omega ) = \frac{\pi }{2},$ then $\bar z\omega $ is equal to
The argument of the complex number $\sin \,\frac{{6\pi }}{5}\, + \,i\,\left( {1\, + \,\cos \,\frac{{6\pi }}{5}} \right)$ is
If ${z_1},{z_2}$ and ${z_3},{z_4}$ are two pairs of conjugate complex numbers, then $arg\left( {\frac{{{z_1}}}{{{z_4}}}} \right) + arg\left( {\frac{{{z_2}}}{{{z_3}}}} \right)$ equals