ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.
$5$
$\sqrt{5}$
$10$
$\sqrt{115}$
જો સંખ્યા $-1, 0, 1, k$ નો પ્રમાણિત વિચલન $\sqrt 5$ હોય તો $k$ = ............... ( જ્યાં $k > 0,$)
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
${x_i}$ | $92$ | $93$ | $97$ | $98$ | $102$ | $104$ | $109$ |
${f_i}$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
નીચે આપેલ આવૃત્તિ વિતરણનું વિચરણ શોધો.
$class$ |
$0 - 2$ |
$2 - 4$ |
$4 - 6$ |
$6 - 8$ |
$8 - 10$ |
$10 - 12$ |
$f_i$ |
$2$ |
$7$ |
$12$ |
$19$ |
$9$ |
$ 1$ |
બે માહિતીમાં $ 5 $ અવલોકનો આવેલ છે કે જેના વિચરણ $4$ અને $5$ છે અને તેમાંના મધ્યકો અનુક્રમે $2$ અને $4$ છે. તો બંને માહિતીને ભેગી કરતાં નવી માહિતીનો વિચરણ મેળવો. .
વીસ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ છે.પુનઃતપાસ કરતાં માલૂમ પડ્યું કે અવલોકન $8$ ખોટું છે. ખોટા અવલોકનને દૂર કરવામાં આવે તો સાચો મધ્યક અને સાચું પ્રમાણિત વિચલન શોધો.