ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.

  • [JEE MAIN 2024]
  • A

    $5$

  • B

     $\sqrt{5}$

  • C

    $10$

  • D

    $\sqrt{115}$

Similar Questions

$2n$  અવલોકનનો વાળી શ્રેણીમાં તે પૈકી અડધા અવલોકનો $a$ બરાબર અને બાકીના $-a $ છે. જો અવલોકનોનું પ્રમાણિત વિચલન $2$  હોય તો $| a | $ બરાબર શું થાય ?

એક $60$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $650$ કલાકો અને પ્રમાણિત વિચલન $8$ કલાકો છે બીજા $80$ બલ્બના નમૂનાનો ચાલવાનો મધ્યક $660$ કલાકો અને પ્રમાણિત વિચલન $7$ કલાકો છે તો બધાનું પ્રમાણિત વિચલન કેટલું થાય ? 

આપેલ માહિતીમાં $n$ અવલોકનો ${x_1},{x_2},......,{x_n}.$ છે જો $\sum\limits_{i - 1}^n {{{({x_i} + 1)}^2}}  = 9n$   અને $\sum\limits_{i - 1}^n {{{({x_i} - 1)}^2}}  = 5n $ હોય તો આ માહિતીનો પ્રમાણિત વિચલન મેળવો 

  • [JEE MAIN 2019]

$y_1$ , $y_2$ , $y_3$ ,..... $y_n$ એ $n$ અવલોકનો છે ${w_i} = l{y_i} + k\,\,\forall \,\,i = 1,2,3.....,n,$ જ્યાં $l$ , $k$ એ અચળો છે જો $y_i's$ નો મધ્યક $48$ અને તેમનો પ્રમાણિત વિચલન $12$ અને $w_i's$ નો મધ્યક $55$ અને પ્રમાણિત વિચલન $15$ હોય તો $l$ અને $k$ ની કિમત મેળવો .

જો $50$ અવલોકનો $x_1, x_2, ………, x_{50}$ નો મધ્યક અને પ્રમાણિત વિચલન બંને $16$ હોય તો $(x_1 - 4)^2, (x_2 - 4)^2, …., (x_{50} - 4)^2$ નો મધ્યક ................ થાય 

  • [JEE MAIN 2019]