किसी समूह के प्रेक्षणों ${x_1},\,{x_2},\,.....{x_n}$ के लिये परिसर $r$ तथा मानक विचलन ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ हैं, तब

 

  • A

    $S \le r\sqrt {\frac{n}{{n - 1}}} $

  • B

    $S = r\sqrt {\frac{n}{{n - 1}}} $

  • C

    $S \ge r\sqrt {\frac{n}{{n - 1}}} $

  • D

    ईनमे से कोई नहीं

Similar Questions

पाँच प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $4$ तथा $5.20$ है। यदि तीन प्रेक्षण $3,4$ तथा $4$ हो, तो अन्य दो प्रेक्षणों के अन्तर का निरपेक्ष मान होगा

  • [JEE MAIN 2019]

$10$ प्रेक्षणों $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$ के लिए $\sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\alpha\right)=2$ तथा $\sum_{i=1}^{10}\left(x_i-\beta\right)^2=40$ हैं, जहाँ $\alpha$ तथा $\beta$ धनात्मक पूर्णांक है। माना इन प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{6}{5}$ तथा $\frac{84}{25}$ है। तो $\frac{\beta}{\alpha}$ बराबर है:

  • [JEE MAIN 2024]

निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए

वर्ग $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
बारंबारता $3$ $7$ $12$ $15$ $8$ $3$ $2$

यदि प्रसरण $v$ तथा मानक विचलन है, तब

निम्नलिखित आँकड़ों के लिए प्रसरण तथा मानक विचलन ज्ञात कीजिए

$6,8,10,12,14,16,18,20,22,24$