यदि दस धन पूर्णांकों $1,1,1, \ldots, 1, k$ का प्रसरण $10$ से कम है, तो $k$ का अधिकतम संभावित मान ......... है |
$12$
$11$
$14$
$21$
माना $100$ छात्रों की कक्षा $\mathrm{A}$ के छात्रों के अंको के माध्य तथा मानक विचलन क्रमशः $40$ तथा $\alpha(>0)$ है तथा $\mathrm{n}$ छात्रों की कक्षा $\mathrm{B}$ के छात्रों के अंकों के माध्य तथा मानक विचलन क्रमशः $55$ तथा $30-\alpha$ है। यदि संयुक्त कक्षा के $100+\mathrm{n}$ छात्रों के अंकों मे माध्य तथा प्रसरण क्रमशः $50$ तथा $350$ हैं, तो कक्षाओं $\mathrm{A}$ तथा $\mathrm{B}$ के प्रसरणों का योग है :
$2n$ प्रेक्षणों की एक श्रेणी में, आधे $a$ के बराबर तथा शेष आधे $-a$ के बराबर हैं। यदि प्रेक्षणों का मानक विचलन $2$ हैए तब $|a|$ =
पाँच प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $4$ तथा $5.20$ है। यदि तीन प्रेक्षण $3,4$ तथा $4$ हो, तो अन्य दो प्रेक्षणों के अन्तर का निरपेक्ष मान होगा
संख्याओं $1, 2, 3, 4, 5, 6$ का माध्य तथा मानक विचलन है
$15$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $8$ और $3$ पाया गया है। इसकी पुन जॉच करने पर यह पाया गया की, प्रेक्षणों में 20 को 5 के रूप में गलत पड़ा गया था, तब सही प्रसरण बराबर है -