माना $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \ldots$. वर्धमान धनात्मक संख्याओं की एक $GP$ है। यदि चौथे व छटवें पदों का गुणनफल 9 है और पाँचवे व सातवें पदों का योग 24 है, तब $\mathrm{a}_1 \mathrm{a}_9+\mathrm{a}_2 \mathrm{a}_4 \mathrm{a}_9+\mathrm{a}_5+\mathrm{a}_7$ बराबर है___________________.
$600$
$606$
$60$
$6$
एक गुणोत्तर श्रेढ़ी में यदि पहले $5$ पदों के योग का उनके व्युत्क्रमों के योग से अनुपात $49$ है तथा इसके पहले तथा तीसरे पदों का योग $35$ है, तो इस गुणोत्तर श्रेढ़ी का प्रथम पद है
एक अनंत गुणोत्तर श्रेणी के पदों का योग $3$ है तथा पदों के वगोर्ं का योग भी $3$ है, तब श्रेणी का प्रथम पद व सार्वानुपात क्रमश: होंगे
गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।
मान ज्ञात कीजिए $\sum_{k=1}^{11}\left(2+3^{k}\right)$
$2, 14, 62$ में क्या जोड़ें, कि वे गुणोत्तर श्रेणी में हो जायें
किसी गुणोत्तर श्रेणी के प्रथम दो पदों का योग $1$ है तथा इस श्रेणी का प्रत्येक पद अपने पूर्व के पद का दुगना है, तो इसका प्रथम पद होगा