ધારો કે $S _1$ અને $S _2$ એવા દરેક $a \in R$ - \{0\}ના ગણો દર્શાવે છે જેના માટે સુરેખ સમીકરણ સંહતિ

$a x+2 a y-3 a z=1$

$(2 a+1) x+(2 a+3) y+(a+1) z=2$

$(3 a+5) x+(a+5) y+(a+2) z=3$

ને અનુક્રમે અનન્ય ઉકેલ તથા અસંખ્ય ઉકેલો હોય. તો

  • [JEE MAIN 2023]
  • A

    $n \left( S _1\right)=2$ અને $S _2$ એ અનંત ગણ છે.

  • B

    $S_1$ એ અનંત ગણ છે અને $n\left(S_2\right)=2$

  • C

    $S _1=\Phi$ અને $S _2= R -\{0\}$

  • D

    $S _1= R -\{0\}$ અને $S _2=\Phi$

Similar Questions

જો $\alpha, \beta, \gamma$ એ સમીકરણ $x ^{3}+ ax ^{2}+ bx + c =0,( a , b , c \in R$ અને  $a , b \neq 0)$ ના બીજ છે અને સમીકરણો ($u,v,w$ ના ચલમાં)  $\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0$ $\gamma u +\alpha v +\beta w =0$ એ શૂન્યતર ઉકેલ ધરાવે છે તો  $\frac{a^{2}}{b}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

જો $\left| {\,\begin{array}{*{20}{c}}a&b&0\\0&a&b\\b&0&a\end{array}\,} \right| = 0$, તો

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&2&{ - 1}\\2&5&x\\{ - 1}&2&x\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.

જો $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, તો $A$  મેળવો.

  • [JEE MAIN 2015]

જો $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2} $ તો $K = $