Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations

$a x+2 a y-3 a z=1$

$(2 a+1) x+(2 a+3) y+(a+1) z=2$

$(3 a+5) x+(a+5) y+(a+2) z=3$

has unique solution and infinitely many solutions. Then

  • [JEE MAIN 2023]
  • A

    $n \left( S _1\right)=2$ and $S _2$ is an infinite set

  • B

    $S_1$ is an infinite set an $n\left(S_2\right)=2$

  • C

    $S _1=\Phi$ and $S _2= R -\{0\}$

  • D

    $S _1= R -\{0\}$ and $S _2=\Phi$

Similar Questions

If $ 5$  is one root of the equation $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$, then other two roots of the equation are

An ordered pair $(\alpha , \beta )$ for which the system of linear equations

$\left( {1 + \alpha } \right)x + \beta y + z = 2$ ; $\alpha x + \left( {1 + \beta } \right)y + z = 3$ ; $\alpha x  + \beta y + 2z = 2$ has a unique solution, is

  • [JEE MAIN 2019]

 If the system of equations $x+2 y-3 z=2$, $2 x+\lambda y+5 z=5$, $14 x+3 y+\mu z=33$ has infinitely many solutions, then $\lambda+\mu$ is equal to:

  • [JEE MAIN 2025]

The values of the determinant $\left| {\,\begin{array}{*{20}{c}}1&{\cos (\alpha - \beta )}&{\cos \alpha }\\{\cos (\alpha - \beta )}&1&{\cos \beta }\\{\cos \alpha }&{\cos \beta }&1\end{array}\,} \right|$ is

The least value of the product $xyz$ for which the determinant $\left| {\begin{array}{*{20}{c}}
  x&1&1 \\ 
  1&y&1 \\ 
  1&1&z 
\end{array}} \right|$ is non-negative, is 

  • [JEE MAIN 2015]