माना $\mathrm{C}$ सबसे बड़ा वृत्त है, जिसका केन्द्र $(2,0)$ पर है तथा जो दीर्घवृत $\frac{\mathrm{x}^2}{36}+\frac{\mathrm{y}^2}{16}=1$ के अंतर्गत है। यदि बिन्दु $(1, \alpha)$ वृत्त $C$ पर है, तो $10 \alpha^2$ बराबर है_______________. 

  • [JEE MAIN 2023]
  • A

    $117$

  • B

    $116$

  • C

    $118$

  • D

    $125$

Similar Questions

दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के बिन्दु $ (0, 3)$ पर अभिलम्ब का समीकरण है

उस दीर्घवृत्त का समीकरण, जिसके शीर्ष $(2, -2), (2, 4)$ हैं तथा उत्केन्द्रता $\frac{1}{3}$ है, होगा

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$

दीर्वृघत $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ को नाभियो से होकर जाने वाले उस वृत, जिसका केन्द्र $(0,3)$ है, का समीकरण है,

  • [JEE MAIN 2013]

यदि एक दीर्घवृत्त के दीर्घ अक्ष की लम्बाई, इसके लघु अक्ष की लम्बाई की तिगुनी है, तो इसकी उत्केन्द्रता होगी