दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{49}+\frac{y^{2}}{36}=1$
The given equation is $\frac{x^2}{49}+\frac{y^{2}}{36}=1$ or $\frac{x^2} {7^{2}}+\frac{y^{2}}{6^{2}}=1$
Here, the denominator of $\frac{x^{2}}{49}$ is greater than the denominator of $\frac{y^{2}}{36}$
Therefore, the major axis is along the $x-$ axis, while the minor axis is along the $y-$ axis.
On comparing the given equation with $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ we obtain $a=7$ and $b=6$
$\therefore c=\sqrt{a^{2}-b^{2}}=\sqrt{49-36}=\sqrt{13}$
Therefore,
The coordinates of the foci are $(\pm \,\sqrt{13}, 0)$
The coordinates of the vertices are $(±7,\,0)$
Length of major axis $=2 a =14$
Length of minor axis $=2 b =12$
Eccentricity, $e=\frac{c}{a}=\frac{\sqrt{13}}{7}$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{2 \times 36}{7}=\frac{72}{7}$
यदि दीर्घवत्त $\frac{ x ^{2}}{ b ^{2}}+\frac{ y ^{2}}{4 a ^{2}}=1$ की एक स्पर्श रेखा तथा निर्देशांक अक्षों द्वारा बने त्रिभुज का न्यूनतम क्षेत्रफल $kab$ है, तो $k$ बराबर है ........ |
दीर्घवृत्त $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ के नाभियों और शीर्षों के निर्देशांक, दीर्घ एव लघु अक्ष की लंबाइयाँ, उत्केंद्रता और नाभिलंब जीवा की लंबाई ज्ञात कीजिए
दीर्घवृत्त $4{x^2} + 9{y^2} + 8x + 36y + 4 = 0$ की उत्केन्द्रता है
आयत $R$ जिसकी भुजायें निर्देशांक अक्षों के समान्तर है के अन्दर दीर्घवत्त $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ को उत्कीर्णित (inscribe) किया गया है। एक अन्य दीर्घवत्त $E _2$ जो बिन्दु $(0,4)$ से गुजरता है और आयत $R$ को परिगत (circumscribe) करता है, की उत्केन्द्रता (eccentricity) निम्न है
ऐसी दो सरल रेखाओं (straight lines) पर विचार कीजिये, जिनमें से प्रत्येक, वृत्त (circle) $x^2+y^2=\frac{1}{2}$ और परवलय (parabola) $y^2=4 x$ दोनों पर ही स्पर्शी (tangent) है। माना कि ये रेखाएं बिंदु $Q$ पर प्रतिच्छेद (intersect) करती हैं। एक ऐसे दीर्घवृत्त (ellipse) पर विचार कीजिये जिसका केंद्र (centre) मूलर्बिंदु (origin) $O(0,0)$ पर है और जिसका अर्ध-दीर्घाक्ष (semi-major axis) $O Q$ है। यदि इस दीर्घवृत के लघु अक्ष (minor axis) की लम्बाई $\sqrt{2}$ है, तब निम्नलिखित में से कौन सा (से) कथन सत्य है (हैं)?
$(A)$ दीर्घवृत्त की उत्केन्द्रता (eccentricity) $\frac{1}{\sqrt{2}}$ है और नाभिलम्ब जीवा (latus rectum) की लम्बाई 1 है
$(B)$ दीर्घवृत्त की उत्केन्द्रता $\frac{1}{2}$ है और नाभिलम्ब जीवा की लम्बाई $\frac{1}{2}$ है
$(C)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध (bounded) क्षेत्र (region) का क्षेत्रफल (area) $\frac{1}{4 \sqrt{2}}(\pi-2)$ है
$(D)$ रेखाओं $x=\frac{1}{\sqrt{2}}$ व $x=1$ के बीच दीर्घवृत्त द्वारा परिबद्ध क्षेत्र का क्षेत्रफल $\frac{1}{16}(\pi-2)$ है