Let $C$ be the largest circle centred at $(2,0)$ and inscribed in the ellipse $=\frac{x^2}{36}+\frac{y^2}{16}=1$.If $(1, \alpha)$ lies on $C$, then $10 \alpha^2$ is equal to $.........$

  • [JEE MAIN 2023]
  • A

    $117$

  • B

    $116$

  • C

    $118$

  • D

    $125$

Similar Questions

If the foci of an ellipse are $( \pm \sqrt 5 ,\,0)$ and its eccentricity is $\frac{{\sqrt 5 }}{3}$, then the equation of the ellipse is

Product of slopes of common tangents to the ellipse $\frac{x^2}{32} + \frac{y^2}{8} = 1$ and parabola $y^2 = 8x$ is -

The normal at a variable point $P$ on an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}}= 1$  of eccentricity e meets the axes of the ellipse in $ Q$  and $R$  then the locus of the mid-point of $QR$  is a conic with an eccentricity $e' $  such that :

If the eccentricity of an ellipse be $5/8$ and the distance between its foci be $10$, then its latus rectum is

Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3,\,0),\,\, a=4$