यदि एक दीर्घवृत्त के दीर्घ अक्ष की लम्बाई, इसके लघु अक्ष की लम्बाई की तिगुनी है, तो इसकी उत्केन्द्रता होगी
$\frac{1}{3}$
$\frac{1}{{\sqrt 3 }}$
$\frac{1}{{\sqrt 2 }}$
$\frac{{2\sqrt 2 }}{3}$
आयत $R$ जिसकी भुजायें निर्देशांक अक्षों के समान्तर है के अन्दर दीर्घवत्त $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$ को उत्कीर्णित (inscribe) किया गया है। एक अन्य दीर्घवत्त $E _2$ जो बिन्दु $(0,4)$ से गुजरता है और आयत $R$ को परिगत (circumscribe) करता है, की उत्केन्द्रता (eccentricity) निम्न है
किसी दीर्घवृत $(eilipse)$ $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b > 0$ पर $P$ एक स्वेच्छ बिन्दु $(arbitrary\,point)$ है। मान लीजिए कि $F _1$ और $F _2$ दीर्घवृत्त की नाभियाँ $(foci)$ हैं। $PF _1 F _2$ त्रिभुज के केन्द्रक $(centroid)$ का बिन्दुपथ $(locus)$ जब $P$ इस दीर्घवृत्त $(ellipse)$ पर घुमता है, क्या होगा ?
दीर्घवृत्त $3{x^2} + 4{y^2} = 12$ के लिये नाभिलम्ब की लम्बार्इ है
मान लीजिए कि $x^2=4 k y, k > 0$ एक परवलय है, जिसका शीर्ष $A$ है। मान लें कि $B C$ इसका नाभि लंब $(latus\,rectum)$ है। एक दीर्घवृत, जिसका केंद्र $B C$ पर है और परवलय को $A$ पर छूता है, $B C$ को $D$ एवं $E$ बिन्दुओं पर इस प्रकार काटता है कि $B D=D E=E C(B, D, E, C$ के क्रम में)। दीर्घवृत की उत्केन्द्रता $(eccentricity)$ निम्न है :
यदि $E$ दीर्घवृत्त $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ है तथा $C$ वृत्त ${x^2} + {y^2} = 9$है। $P$ व $Q$ दो बिन्दु क्रमश: $(1, 2)$ एवं $(2, 1)$ हों तो