माना $p$ तथा $p +2$ अभाज्य संख्याएँ हैं तथा माना $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ है। तब $\alpha$ तथा $\beta$ के अधिकतम मानों, जिनके लिए $p ^\alpha$ तथा $( p +2)^\beta, \Delta$ को विभाजित करते हैं, का योग है $...........$
$4$
$3$
$2$
$1$
यदि समीकरण निकाय
$x+y+z=6$
$2 x+5 y+\alpha z=\beta$
$x+2 y+3 z=14$
के अनन्त हल है. तो $\alpha+\beta$ बराबर है
$x$ के मान ज्ञात कीजिए यदि
$\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
यदि $a \ne p,b \ne q,c \ne r$ और $\left| {\,\begin{array}{*{20}{c}}p&b&c\\{p + a}&{q + b}&{2c}\\a&b&r\end{array}\,} \right|$ =$0,$ तो $\frac{p}{{p - a}} + \frac{q}{{q - b}} + \frac{r}{{r - c}} = $
$k$ के किस मान के लिये समीकरण निकाय $x + ky - z = 0,3x - ky - z = 0$ व $x - 3y + z = 0$ का एक अशून्य हल होगा
सारणिकों का मान ज्ञात कीजिए :
$\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$