सारणिकों का मान ज्ञात कीजिए :
$\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
$\left| {\begin{array}{*{20}{c}}
{\cos \theta }&{ - \sin \theta } \\
{\sin \theta }&{\cos \theta }
\end{array}} \right|$
$ = (\cos \theta )(\cos \theta ) - ( - \sin \theta )(\sin \theta )$
$ = {\cos ^2}\theta + {\sin ^2}\theta $
$ = 1$
समीकरणों $x + ay = 0,$ $az + y = 0$ और $ax + z = 0$ के अनन्त हल हों, तो $a $ का मान होगा
सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}3 & -1 & -2 \\ 0 & 0 & -1 \\ 3 & -5 & 0\end{array}\right|$
यदि $|A| $ तीसरे क्रम के वर्ग आव्यूह $A$ के सारणिक के मान को निरुपित करता हो, तो $ |-2A|$=
माना $A =\left(\begin{array}{cc}4 & -2 \\ \alpha & \beta\end{array}\right)$ है। यदि $A ^2+\gamma A +18 I =$ $O$ है, तो $\operatorname{det}( A )$ बराबर है
माना समीकरण निकाय
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
का अद्वितीय हल $\left( x ^*, y ^*, z ^*\right)$ है यदि $\left(\alpha, x ^*\right)$, $\left( y ^*, \alpha\right)$ तथा $\left( x ^*,- y ^*\right)$ संरेखीय बिन्दु हो, तो $\alpha$ की सभी संभव मानों का निरपेक्ष मान होगा :