અહી $p$ અને $p+2$ એ અવિભાજ્ય સંખ્યા છે અને $\Delta=\left|\begin{array}{ccc}p ! & (p+1) ! & (p+2) ! \\ (p+1) ! & (p+2) ! & (p+3) ! \\ (p+2) ! & (p+3) ! & (p+4) !\end{array}\right|$ હોય તો $\alpha$ અને $\beta$ ની મહતમ કિમંતોનો સરવાળો મેળવો કે જેથી $p ^{\alpha}$ અને $( p +2)^{\beta}$ એ $\Delta$ ને વિભાજે .
$4$
$3$
$2$
$1$
સમીકરણની સંહતિ $x + 4y - z = 0,$ $3x - 4y - z = 0,\,x - 3y + z = 0$ ના ઉકેલની સંખ્યા મેળવો.
$l,m,n$ એ ધન સમગુણોતર શ્રેણીના ${p^{th}},{q^{th}}$ અને ${r^{th}}$ ના પદો હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ = . . . .
ધારો ક $A.P$. (સમાંતર શ્રેણી) ના ત્રણ ભિત્ર ક્રમિક પદો $a, b, c$ માટે રેખાઓ$a x+b y+c=0$ બિંદુ $\mathrm{P}$ પર સંગામી થાય છે તથા $\mathrm{Q}(\alpha, \beta)$ એવું બિંદુ છે કે જેથી સમીકરણ સંહતિ $x+y+z=6 \text {, }$ , $2 x+5 y+\alpha z=\beta $ અને $x+2 y+3 z=4 $ ને અનંત ઉકેલો મળે. તો $(\mathrm{PQ})^2=. . . . . $
જો ${a_1},{a_2},{a_3}.....{a_n}....$ એ સમગુણોતર શ્રેણીમાં હોય તો $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ ની કિમંત મેળવો.
જો $\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2\end{array}\right|=\frac{9}{8}(103 x+81)$, હોય,તો $\lambda$, $\frac{\lambda}{3}$ એ $.........$ સમીકરણના બીજ છે.