माना परवलय $y ^2=4 x$ की नाभिय जीवा $PQ$ इस प्रकार है कि यह बिन्दु $(3,0)$ पर $\frac{\pi}{2}$ का कोण अन्तरित करती है। माना रेखाखण्ड $PQ$, दीर्घवृत्त $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a^2 > b^2$ की नाभिय जीवा भी है। यदि दीर्घवृत्त $E$ की उत्केन्द्रता $e$ है, तो $\frac{1}{ e ^2}$ का मान है :

  • [JEE MAIN 2022]
  • A

    $1+\sqrt{2}$

  • B

    $3+2 \sqrt{2}$

  • C

    $1+2 \sqrt{3}$

  • D

    $4+5 \sqrt{3}$

Similar Questions

माना वक्रो $4\left( x ^2+ y ^2\right)=9$ तथा $y ^2=4 x$ की उभयनिष्ठ स्पर्श रेखायें बिन्दु $Q$ पर काटती है। माना दीर्घवृत्त जिसका केन्द्र मूलबिन्दु $O$ पर है, के लघुअक्ष तथा दीर्घअक्ष की लम्बाई क्रमशः $OQ$ तथा 6 के बराबर है। यदि दीर्घवृत्त की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई को क्रमशः $e$ तथा $l$ से दर्शाते है, तो $\frac{l}{ e ^2}$ बराबर है $..........$

  • [JEE MAIN 2022]

अंतराल $0<\theta<\frac{\pi}{2}$ में दीर्घवृत $\frac{x^2}{9}+\frac{y^2}{4}=1$ के चार बिन्दुओं $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ पर चार स्पर्शज्याएँ खींची गयी है। यदि $A(\theta)$ इन स्पर्शज्याओं द्वारा बनाए गए चतुर्भुज को इंगित करता है, तब $A(\theta)$ का न्यूनतम मान निम्न होगा:

  • [KVPY 2018]

दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{9} = 1$ की जीवा का समीकरण, जो कि बिन्दु $(2,1)$ से जाती है, तथा यह बिन्दु जीवा को दो बराबर बराबर भागों में विभाजित करता है, होगा

किसी दीर्घवृत्त का केन्द्र $C$ एवं $PN$ कोई कोटि है, $A$, $A'$ दीर्घवृत्त के सिरे हैं तो $\frac{{P{N^2}}}{{AN\;.\;A'N}}$ का मान होगा  

माना दीर्घवृत्त $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर एक बिंदु $P$ है। माना $P$ से होकर जाने वाली तथा $y$-अक्ष के समांतर रेखा $x^2+y^2=9$ के बिंदु $Q$ पर मिलती है तथा $P$ और $Q$, $X$ अंक्ष के एक ही ओर है | तो $P$ के दिर्ध्वृत पर  चलने पर $P Q$ पर एक बिंदु $R$ जिसके लिए $\mathrm{PR}: \mathrm{RQ}=4: 3$ हैं, के बिंदुपथ की उत्केन्द्रता है:

  • [JEE MAIN 2024]