Let $PQ$ be a focal chord of the parabola $y^{2}=4 x$ such that it subtends an angle of $\frac{\pi}{2}$ at the point $(3, 0)$. Let the line segment $PQ$ be also a focal chord of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a^{2}>b^{2}$. If $e$ is the eccentricity of the ellipse $E$, then the value of $\frac{1}{e^{2}}$ is equal to

  • [JEE MAIN 2022]
  • A

    $1+\sqrt{2}$

  • B

    $3+2 \sqrt{2}$

  • C

    $1+2 \sqrt{3}$

  • D

    $4+5 \sqrt{3}$

Similar Questions

The ellipse $ 4x^2 + 9y^2 = 36$  and the hyperbola $ 4x^2 -y^2 = 4$  have the same foci and they intersect at right angles then the equation of the circle through the points of intersection of two conics is

On the ellipse $\frac{{{x^2}}}{{18}} + \frac{{{y^2}}}{8} = 1$ the point $M$ nearest to the line $2x - 3y + 25 = 0$ is

If distance between the directrices be thrice the distance between the foci, then eccentricity of ellipse is

A triangle is formed by the tangents at the point $(2,2)$ on the curves $y^2=2 x$ and $x^2+y^2=4 x$, and the line $x+y+2=0$. If $r$ is the radius of its circumcircle, then $r ^2$ is equal to $........$.

  • [JEE MAIN 2023]

Consider the ellipse

$\frac{x^2}{4}+\frac{y^2}{3}=1$

Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

$List-I$ $List-II$
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is ($P$) $\frac{(\sqrt{3}-1)^4}{8}$
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is ($Q$) $1$
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is ($R$) $\frac{3}{4}$
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is ($S$) $\frac{1}{2 \sqrt{3}}$
  ($T$) $\frac{3 \sqrt{3}}{2}$

The correct option is:

  • [IIT 2022]