अंतराल $0<\theta<\frac{\pi}{2}$ में दीर्घवृत $\frac{x^2}{9}+\frac{y^2}{4}=1$ के चार बिन्दुओं $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ पर चार स्पर्शज्याएँ खींची गयी है। यदि $A(\theta)$ इन स्पर्शज्याओं द्वारा बनाए गए चतुर्भुज को इंगित करता है, तब $A(\theta)$ का न्यूनतम मान निम्न होगा:
$21$
$24$
$27$
$30$
दीर्घवृत्त $\frac{{{x^2}}}{{64}} + \frac{{{y^2}}}{{28}} = 1$ की उत्केन्द्रता है
समीकरण $\frac{{{x^2}}}{{2 - r}} + \frac{{{y^2}}}{{r - 5}} + 1 = 0$ दीर्घवृत्त को प्रदर्शित करेगा यदि
दीर्घवृत्त $4{x^2} + 9{y^2} = 1$ पर वे बिन्दु, जहाँ पर इसकी स्पर्श रेखाएँ, रेखा $8x = 9y$ के समान्तर हैं, है
यदि $\theta $ तथा $\phi $, दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ के संयुग्मी व्यासों के सिरों के उत्केन्द्र कोण हैं, तो $\theta - \phi $ बराबर होगा
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{49}} = 1$ के नाभिलम्ब की लम्बाई होगी