माना वक्रो $4\left( x ^2+ y ^2\right)=9$ तथा $y ^2=4 x$ की उभयनिष्ठ स्पर्श रेखायें बिन्दु $Q$ पर काटती है। माना दीर्घवृत्त जिसका केन्द्र मूलबिन्दु $O$ पर है, के लघुअक्ष तथा दीर्घअक्ष की लम्बाई क्रमशः $OQ$ तथा 6 के बराबर है। यदि दीर्घवृत्त की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई को क्रमशः $e$ तथा $l$ से दर्शाते है, तो $\frac{l}{ e ^2}$ बराबर है $..........$
$5$
$4$
$3$
$2$
दीर्घवृत्त $\frac{{{x^2}}}{{36}} + \frac{{{y^2}}}{{20}} = 1$ की नियताओं के बीच की दूरी है
उस दीर्घवृत्त का समीकरण जिसका केन्द्र $(2, -3)$, एक नाभि $(3, -3)$ और संगत शीर्ष $(4, -3)$ है, होगा
उस दीर्घवृत्त, जिसके अक्ष निर्देशांक अक्ष है, जो बिन्दु $(-3,1)$ से होकर जाता है तथा जिसकी उत्केन्द्रता $\sqrt{\frac{2}{5}}$ है, का समीकरण है:
एक दीर्घवृत्त की उत्केन्द्रता $\frac{2}{3}$, नाभिलम्ब $5$ तथा केन्द्र $(0, 0)$ हैं, तो दीर्घवृत्त का समीकरण है
दीर्घवृत्त $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ की कोई स्पर्श रेखा अक्षों पर $h$ व $k$ लम्बाई के अन्त: खण्ड काटती है, तो $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $