ધારોકે $p$ અને $q$ બે એવી વાસ્તવિક સંખ્યાઓ છે કે જેથી $p+q=3$ અને $p^{4}+q^{4}=369$. તો $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}=$

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $5$

Similar Questions

સમીકરણ ${\left( {{x^2} - 5x + 5} \right)^{{x^2} + 4x - 60}} = 1$ ને સંતોષતી $x $ ની બધીજ વાસ્તવિક કિંમતોનો સરવાળો . . . . છે.

  • [JEE MAIN 2016]

જો $\alpha ,\beta,\gamma$ એ સમીકરણ $x^3 + 2x -5 = 0$ ના ઉકેલો હોય અને સમીકરણ  $x^3 + bx^2 + cx + d = 0$ ના ઉકેલો $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ હોય તો $|b + c + d|$ ની કિમત મેળવો (જ્યાં $b,c,d$ નો સરવાળો અવિભાજય સંખ્યા છે )

જો $x$ કોઇ વાસ્તવિક સંખ્યા હોય તો $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ ની મહતમ કિંમત . . . હોય . .

  • [AIEEE 2006]

જો $\alpha$ અને $\beta$ એ સમીકરણ $5 x^{2}+6 x-2=0$ ના બીજો હોય અને $S_{n}=\alpha^{n}+\beta^{n}, n=1,2,3 \ldots$ હોય તો 

  • [JEE MAIN 2020]

'$m$' ની કેટલી પૂર્ણાક કિમતો માટે $\{x\}^2 + 5m\{x\} - 3m + 1 < 0 $ $\forall x \in  R$ થાય (જ્યાં $\{.\}$ એ અપૂર્ણાક ભાગ વિધેય છે)