Let $p$ and $q$ be two real numbers such that $p+q=$ 3 and $p^{4}+q^{4}=369$. Then $\left(\frac{1}{p}+\frac{1}{q}\right)^{-2}$ is equal to

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $1$

  • C

    $4$

  • D

    $5$

Similar Questions

Suppose $a$ is a positive real number such that $a^5-a^3+a=2$. Then,

  • [KVPY 2016]

If $\alpha , \beta , \gamma $ are roots of equation ${x^3} + a{x^2} + bx + c = 0$, then ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $

If $a$ and $b$ are the roots of equation $x^2-7 x-1=0$, then the value of $\frac{a^{21}+b^{21}+a^{17}+b^{17}}{a^{19}+b^{19}}$ is equal to $........$.

  • [JEE MAIN 2023]

The number of pairs of reals $(x, y)$ such that $x=x^2+y^2$ and $y=2 x y$ is

  • [KVPY 2009]

Let $S$ be the set of all real roots of the equation, $3^{x}\left(3^{x}-1\right)+2=\left|3^{x}-1\right|+\left|3^{x}-2\right| .$ Then $\mathrm{S}$

  • [JEE MAIN 2020]