माना $\alpha, \beta, \gamma$ समीकरण $x ^{3}+ ax ^{2}+ bx + c =0$, $(a, b, c \in R$ तथा $a, b \neq 0)$ के वास्तविक मूल हैं। यदि $u , v , w$ में समीकरण निकाय $\alpha u +\beta v +\gamma w =0$, $\beta u+\gamma v+\alpha w=0 ; \gamma u+\alpha v+\beta w=0$ का अतुच्छ हल है, तो $\frac{a^{2}}{b}$ का मान है

  • [JEE MAIN 2021]
  • A

    $5$

  • B

    $3$

  • C

    $1$

  • D

    $0$

Similar Questions

यदि समीकरण निकाय $x-2 y+3 z=9$, $2 x+y+z=b$, $x-7 y+a z=24$ के अनंत हल हो, तो $a - b$ का मान होगा

  • [JEE MAIN 2020]

यदि $A =\left[\begin{array}{lcl}1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1\end{array}\right]$ हो, तो सही $\theta \in\left(\frac{3 \pi}{4}, \frac{5 \pi}{4}\right)$ के लिये $\operatorname{det}( A )$ किस अन्तराल में स्थित होगा

  • [JEE MAIN 2019]

$\alpha, \beta \in \mathbb{R}$ के लिए, माना समीकरण निकाय $ x-y+z=5 $ $ 2 x+2 y+\alpha z=8 $ $ 3 x-y+4 z=\beta $ के अनंत हल है, तब $\alpha$ व $\beta$ निम्न में से किसके मूल है

  • [JEE MAIN 2023]

$\left| {\,\begin{array}{*{20}{c}}{1/a}&1&{bc}\\{1/b}&1&{ca}\\{1/c}&1&{ab}\end{array}\,} \right| = $

अंतराल $(0,4 \pi)$ में $\theta$ के मानों, जिनके लिए रैखिक समीकरण निकाय

$3(\sin 3 \theta) x-y+z=2$

$3(\cos 2 \theta) x+4 y+3 z=3$

$6 x+7 y+7 z=9$

का कोई हल नहीं है, की संख्या है:

  • [JEE MAIN 2022]